ai服务器的定义、优势及现状在即将到来或者说已经到来的人工智能时代,我们更多的是听到ai服务器这一名词。那么,究竟什么是ai服务器,ai服务器又为何适用人工智能时代? ai服务器的定义 从硬件架构来看,ai服务器主要指的是采用异构形式的服务器,表现形态多为机架式。在异构方式上,可以为cpu+gpu、cpu+fpga、cpu+tpu、cpu+asic或cpu+多种加速卡。 而在其他组成部件上,如内存模块、存储模块、网络模块与传统服务器差别不大,主要的提升便是支持更大容量的内存满足当下实时负载增加的需求,提供更多外置硬盘插槽,并广泛支持nvme/pcie等ssd,满足数据洪流需求,网络模块主要表现为带宽增加。 尽管ai服务器可以采用多种异构形式,但目前广泛使用的是cpu+gpu。也因此,业界在谈到ai服务器时,往往将其默认为gpu服务器。因此,在第二部分中,笔者谈到的ai服务器优势也主要为gpu服务器。 ai服务器的优势 传统服务器主要以cpu为算力提供者。而cpu为通用型处理器,采用串行架构,擅长逻辑计算,负责不同类型种类的数据处理及访问,同时逻辑判断又需要引入大量分支跳转中断处理,这使得cpu的内部结构复杂。也因此,cpu算力的提升主要靠堆核来实现。 随着云计算、大数据、ai、物联网等技术应用,数据在近几年呈指数型增长,idc统计显示全球90%数据均在近几年产生,这便对cpu的处理能力提出考验,而目前cpu的物理工艺、核心数已接近极限,数据量却不会停止,服务器的处理能力必须提升。因此,在ai时代下,仅由cpu做算力提供者的传统服务器并不能满足需求。 不同于cpu,gpu采用并行计算模式,单卡核心数达到上千个,擅长处理密集型运算应用,如图形渲染、计算视觉和机器学习。经过几年验证,搭载gpu的服务器也被证实的确适用这个时代。 ai服务器市场现状 idc全球半年度人工智能系统支出指南预测显示,2019年全球人工智能系统支出将达到358亿美元,相比2018年增加44.0%。同时,人工智能系统支出到2022年将翻一番达到792亿美元,2018年到2020年预测期内复合年增长率(cagr)为38.0%。 这一数值也意味着,ai服务器的市场有多广。也因此,全球几大服务器厂商均紧锣密鼓部署着ai服务器。 目前,在中国市场上,浪潮的市场占有率最大,且处于绝对领先地位,份额达到51.4%,曙光和新华三紧随其后。从行业分布来看,互联网当之无愧是ai服务器的主要用户。而在gpu上,nvidia具有明显优势,其tesla系列产品在ai基础设施市场占据主导地位,尤其在线下训练场景中处于垄断地位。 而在ai服务器上,目前性能最强的为浪潮ai超级服务器agx-5,agx-5是专为深度学习和高性能计算的性能扩展设计,单机在8u空间里可以配置16颗nvidia tesla v100 tensor core 32gb gpus,拥有10240个张量计算核心,计算性能高达每秒2千万亿次。 | |||||
| |||||